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Abstract

We make explicit the geometric content of Mel’nikov’s method for detecting heteroclinic points between
transversally hyperbolic periodic orbits. After developing the general theory of intersections for pairs of
families of Lagrangian submanifolds N±

ε , with N+

0 = N−

0 and constrained to live in an auxiliary family
of submanifolds, we explain how the heteroclinic orbits of a given Hamiltonian system are detected by
the zeros of the Mel’nikov 1-form. This 1-form admits an integral expression which is non-convergent in
general. We discuss different solutions to this convergence problem.
c© 2005 Elsevier B.V. All rights reserved.

0. Introduction

In his article [11], Mel’nikov introduced a method for studying time-periodic perturbations
Hε (x, ξ, t) = H0 (x, ξ)+εH1 (x, ξ, t) of 2-dimensional time-independent Hamiltonian systems.
The author considers the case where H0 has a hyperbolic fixed point m0 ∈ R2 such that (one
“half” of) its stable manifold coincides with (one “half” of) its unstable manifold, as depicted in
the picture below.

Let us denote this manifold by N0. For studying the time-dependent perturbations of H0, one
might consider a section at time t = 0 of the system in R2

× S1, given by the time 1 flow
φt=1

X Hε
. Because of the structural stability of hyperbolic points, there is a smooth family mε of

hyperbolic points for the map φ1
X Hε

. Furthermore, the hyperbolicity implies the existence of a

smooth family of stable (resp. unstable) manifolds N+
ε (resp. N−

ε ) for mε. However, as soon as
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ε 6= 0, they might not coincide and their intersections (called homoclinic points) would form in
general a very complicated set. See the following picture.

This phenomenon, referred to as the “homoclinic entanglement”, is the sign of the chaotic
behaviour of the system near m0. It is also known to be the key feature of Arnold’s diffusion (see
e.g. [3]). In order to detect the positions of the homoclinic points of mε, Mel’nikov defined the
function

M (t) =

∫
+∞

−∞

{H1 (t + s) , H0} (m(s)) ds,

where m (s) is the trajectory onN0 under the unperturbed dynamics of H0 starting from a chosen
point m ∈ N0. This point plays the role of an origin onN0 and t is a coordinate. Mel’nikov shows
that the non-degenerate zeros of M describe at first order in ε the position of the homoclinic
points of the perturbed hyperbolic point mε. The main feature of the expression of M is that the
only flow that one has to integrate is that of H0, i.e., the unperturbed dynamics, which is supposed
to be well understood. On the other hand, one knows that such a time periodic perturbed system
can be rewritten as an autonomous one, through a standard procedure. Namely, one takes the
product of the initial symplectic manifold (here simply R2) with T ∗S1, where the S1 factor
corresponds to the t variable. In the extended system, the hyperbolic fixed point mε becomes a
transversally hyperbolic periodic orbit γε, whose stable and unstable manifolds intersect along
trajectories homoclinic to γε.

The main goal of this article is to clarify the geometric content of Mel’nikov’s method,
which extends to higher-dimensional systems on general symplectic manifolds, for detecting
heteroclinic (and not only homoclinic) orbits linking two periodic orbits. Mel’nikov’s method
has actually two separate aspects. First, the heteroclinic orbits are in correspondence with the
zeros of a geometric object, namely the Mel’nikov 1-form. Second, one tries to give this 1-form
an integral expression involving only the flow of the unperturbed dynamics. These two issues
roughly correspond to the two main sections of this paper.

The extension of Mel’nikov’s technique for detecting heteroclinic orbits linking two
transversally hyperbolic periodic orbits or tori, rather than hyperbolic points, has been considered
by many authors, e.g. [2,5–7,9,10,14]. But, they all consider dynamical systems with the common
feature that there is an explicit separation between the “longitudinal” and “transversal” variables,
corresponding respectively to the motion along the tori (or the periodic orbits) and the hyperbolic
transversal motion. It turns out that resorting to explicit coordinates has several drawbacks we
would like to point out now.
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• First of all, this assumption is unnecessary and actually goes against a satisfactory understand-
ing of the geometry underlying this method. One aim of this paper is to describe the geometric
objects involved in Mel’nikov’s method without reference to any coordinate system. In par-
ticular, as a multidimensional generalisation of the Mel’nikov function, the authors introduce
a “Mel’nikov vector”, whereas the correct geometric object is rather a 1-form, as we explain
throughout this paper. The use of a 1-form is in fact very natural since Mel’nikov’s method
deals with deformations of Lagrangian submanifolds (the stable and unstable ones) and it is
well known [13] that the deformation theory of Lagrangian submanifolds is parameterised by
closed 1-forms. The Mel’nikov 1-form is thus closed and it is actually exact for geometrical
reasons explained in Section 2.2.3. We believe that this clarifies the statement “The Mel’nikov
vector is a gradient” which, in the literature, seems to be true for slightly obscure reasons. In
fact, this is always true and not only in the particular models people studied.

• Second, these particular models (with a separation between the longitudinal and transversal
motions) dismiss a large class of systems. Indeed, it is well known from different studies
of completely integrable systems [4,12] that the local model near a transversally hyperbolic
invariant m-dimensional torus is not always Tm

× Rm
× R2n (as in the above-mentioned par-

ticular models) but may be a quotient of that by a finite group. For example, in dimension 4, it
happens that the local stable and unstable manifolds of a periodic orbit are not diffeomorphic
to the cylinder but rather to the Möbius strip.1

• Third, these particular systems are highly non-generic in the heteroclinic case. Indeed, they
have the feature that the heteroclinic manifolds link two tori with the same Diophantine prop-
erty. For example, in the case of periodic orbits (instead of tori), this means that the orbits have
the same period. Generically, the periods are different and this prevents us from difficulty in
expressing the Mel’nikov 1-form in terms of an integral over the unperturbed flow. This issue
is treated in Section 2.3.4.

The general tool we will rely on is the intersection theory for pairs
(
N+
ε ,N−

ε

)
of Lagrangian

submanifolds which coincide for ε = 0 and which are constrained to live in an auxiliary
submanifold N±

ε ⊂ Pε for all ε. Indeed, stable and unstable manifolds of transversally
hyperbolic periodic orbits are Lagrangian and confined at least in an energy level {Hε = cst}.
For this particular intersection theory, one has to introduce a suitable “transversality” condition

at ε = 0 (roughly speaking, a condition on the variations “ dN±
ε

dε ”) in order to insure transversality
of N+

ε and N−
ε in Pε for ε 6= 0, since the usual transversality hypothesis is obviously not

fulfilled at ε = 0. This theory, which actually applies to any pair of Lagrangian submanifolds
regardless of their stable/unstable feature, is developed in Section 1. It is shown that investigating
the intersections of N+

ε and N−
ε for ε 6= 0 amounts to looking for the “non-degenerate” zeros

of a 1-form β defined on N+

0 = N−

0 , which we call the Mel’nikov 1-form despite this name
takes on its full meaning only when N+

ε and N−
ε are the stable and unstable manifolds of two

transversally hyperbolic periodic orbits γ±
ε . In that case, the intersections of N+

ε and N−
ε are

thus heteroclinic points between γ+
ε and γ−

ε , or homoclinic points in the case where there is only
one periodic orbit γ+

ε = γ−
ε .

This is the topic of Section 2, where we apply the theory developed in Section 1 to
this heteroclinic/homoclinic situation. We will focus on the following questions. When the
unperturbed Hamiltonian H0 is completely integrable (this is automatic for 2-dimensional
systems), i.e., admits a momentum map A = (A1, . . . , Ad), then one can compute the Mel’nikov

1 See [4] for a precise description of such systems. See also the end of Section 2.1.1 for a picture of this situation.
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1-form β through the evaluations β
(
X A j

)
. This shows in particular that in the near-integrable

case, the splitting of the stable and unstable manifolds is completely described by the integrals
of motion of the unperturbed Hamiltonian H0. Beside this, it turns out that the functions β

(
X A j

)
have an integral expression involving only the flow of H0. Unfortunately, these integrals do not
converge in general. Then, we discuss what the different solutions to this convergence problem
are, namely either assuming that the perturbation Hε−H0 is critical on both orbits γ±

0 or choosing
the A j ’s critical on γ±

0 . The latter works perfectly in the homoclinic situation, but we explain
that in the heteroclinic one, there are usually not enough independent such A j ’s for determining
the Mel’nikov 1-form. We show however that there is a special case (to which the time-periodic
systems belong) for which there are precisely enough A j ’s critical on γ±

0 for computing β.
This question is usually ignored in the literature since the authors consider either the homoclinic
situation or periodically forced systems.

1. Intersections of families of Lagrangian submanifolds

We forget for the moment the heteroclinic theory of transversally hyperbolic orbits and
we begin with the intersection theory for some families of compact submanifolds N±

ε in a
given manifold M. All the manifolds under consideration are smooth. Also, we assume that
the families depend smoothly on the deformation parameter ε, in the sense that the union⋃
ε

(
N±
ε × {ε}

)
is a smooth submanifold of M × R. From now on, both these smoothness

conditions will always be implicitly assumed.
It is well known that whenever N+

0 and N−

0 intersect transversally at some point m, i.e.,
TmN+

0 ⊕ TmN−

0 = TmM, then in a neighbourhood of m, the intersectionN+

0 ∩N−

0 is a smooth
submanifold of dimension equal to dimN+

0 + dimN−

0 − dimM. Moreover, N+
ε ∩ N−

ε is a
smooth family of submanifolds ofM, for small enough ε.

As mentioned in the introduction, we need to consider the situation where N+
ε and N−

ε

are deformations of the same N0. Such families are obviously not transverse for ε = 0, but a
suitable transversality condition on the “first derivatives d

dεN
±
ε ” can be introduced to describe

the intersection N+
ε ∩N−

ε for ε 6= 0. This issue is addressed in Section 1.1.
On the other hand, if we know a priori that N+

ε and N−
ε are constrained to live in an

intermediate submanifold Pε, the smoothness of the intersection N+
ε ∩ N−

ε can be insured by
an “infinitesimal transversality” condition in P0. This is precisely the case for the Mel’nikov
situation where the families under consideration are included in a level set of the Hamiltonian
function Hε. This question is considered in Section 1.2.

Finally, in the symplectic framework, the intersection theory for Lagrangian submanifolds is
somewhat simpler and it is well described by the Mel’nikov 1-form, a differential form on N0,
as we discuss in Section 1.3.

1.1. Infinitesimally transverse intersections

1.1.1. Generating flows for families of submanifolds
First, we need to parameterise the families of submanifolds with families of diffeomorphisms

in the following way.
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Definition 1. Let Nε ⊂ M be a family of compact submanifolds. A (time-dependent) vector
field Xε is said to generate Nε if its flow φεXε satisfies φεXε (N0) = Nε and if X0 is not tangent
to N0 whenever it is non-zero, i.e.,

X0 (m) ∈ TmN0 H⇒ X0 (m) = 0.

We will also say that the flow φεXε generates Nε.

Notice that in general it is impossible to a choose a time-independent vector field to generate
a given family Nε, whereas there always exists a time-dependent one, as the next lemma shows.

Lemma 2. Let Nε ⊂ M be a family of compact submanifolds. Then there exists a vector
field Xε generating Nε. Moreover, when one is given two deformations N±

ε of the same
N0 := N+

0 = N−

0 , then there exist generating vector fields X±
ε such that X+

0 − X−

0 is not
tangent to N0 whenever it is non-zero.

Proof. The Tubular Neighbourhood Theorem says that there is a neighborhood O ⊂ M of N0,
a vector bundle E over N0, a neighborhood Õ ⊂ E of the zero-section and a diffeomorphism
χ : O → Õ which sends N0 to the zero-section. One can assume O and Õ are compact. For
small enough ε, the submanifolds N±

ε lie in O. Through the map χ , one obtains families of
submanifolds Ñ±

ε = χ
(
N±
ε

)
⊂ Õ close to the zero-section, hence they are graphs of sections

of E . Therefore, there exist particular vector fields Ỹ ±
ε generating Ñ±

ε , namely those associated
with vertical translations. These vector fields are vertical and thus not tangent to N0 whenever
they do not vanish. The same is true for the difference Y +

ε − Y −
ε . Now, define X̃±

ε = f Ỹ ±
ε , with

f ∈ C∞

0 (E) a smooth function with support in Õ and equal to 1 in a (smaller) neighborhood of

the zero-section. By construction, for small enough ε, the vector fields X±
ε = χ−1

∗

(
X̃±
ε

)
onM

generate N±
ε in the sense of Definition 1. �

In all the following, we will always choose implicitly generating vector fields with the
property of Lemma 2. For a given family Nε, the choice of a generating vector field is of course
not unique, but different choices are related as follows.

Lemma 3. Let Nε ⊂ M be a family of compact submanifolds. If two vector fields Xε and Yε
generate Nε, then the difference Xε − Yε is tangent to Nε for all ε.

Proof. Denote by φε (resp. ϕε) the flow of Xε (resp. Yε). The vector field of the flow (φε)−1 is
equal to −(φε)−1

∗ (Xε) and therefore, the composition ψε = (φε)−1
◦ϕε is the flow of the vector

field (φε)−1
∗ (−Xε + Yε). On the other hand, ψε obviously sends N0 to itself and its vector field

is thus tangent to N0. This implies that Xε − Yε is tangent to φε (N0) = Nε, for all ε. �

1.1.2. Infinitesimal transversality
From now on, we consider two families N+

ε and N−
ε which are deformations of the same

submanifold N0 := N+

0 = N−

0 . Let us now introduce the suitable transversality condition to
describe the intersections of N+

ε and N−
ε .

Definition 4. LetN±
ε ⊂M be two families of compact submanifolds generated by vector fields

X±
ε . We say that a point m ∈ N0 is an infinitesimal intersection of N+

ε and N−
ε if X+

0 = X−

0
at m.
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Lemma 5. The notion of “infinitesimal intersection” is well-defined, i.e., independent of the
choice of X±

ε .

Proof. Let X+
ε (resp. X−

ε ) be a vector field generating N+
ε (resp. N−

ε ) and let m ∈ N0 be a
point where X+

0 = X−

0 . Suppose we have a second vector field X̃+
ε (resp. X̃−

ε ) generating N+
ε

(resp. N−
ε ). According to Lemma 3, the differences X+

0 − X̃+

0 and X−

0 − X̃−

0 are tangent to N0

and therefore so is X+

0 − X−

0 −

(
X̃+

0 − X̃−

0

)
. Now, if X+

0 − X−

0 vanishes at m, then X̃+

0 − X̃−

0

must be tangent to N0. This is a contradiction and therefore X̃+

0 − X̃−

0 vanishes at m too. �

Definition 6. Let X±
ε be vector fields generating N±

ε and let m ∈ N0 be an infinitesimal
intersection of N+

ε and N−
ε . We define the linear operator Dm,X±

0
: TmN0 → TmM by

Dm,X±

0
(Y ) :=

[
Ỹ , X+

0 − X−

0

]
m
,

where Ỹ ∈ Γ (TM) is any extension toM of ι∗Y , with ι : N0 ↪→M the inclusion map.

Lemma 7. The operator Dm,X±

0
is well-defined, i.e., independent of the choice of the

extension Ỹ .

Proof. Let Y ∈ TmN0 be a vector. If Ỹ and Ỹ ′ are two extensions of ι∗Y , then the difference
Ỹ ′

− Ỹ vanishes at m and we have
[
Ỹ ′

− Ỹ , X+

0 − X−

0

]
m

= 0 since X+

0 − X−

0 also vanishes at

m. The definition of Dm,X±

0
is thus independent of the choice of the extension Ỹ . �

Notice that despite the operator Dm,X±

0
depends on the choice of the generating vector fields

X±
ε , the following notion does not.

Definition 8. Let N±
ε be families of compact submanifolds. An infinitesimal intersection m ∈

N0 is called a transverse whenever the space img Dm,X±

0
is transverse to TmN0 in TmM, with

X±
ε any generating vector fields.

Lemma 9. The previous notion of transversality is well-defined, i.e., independent of the choice
of the vector fields generating N±

ε .

Proof. Suppose we have two pairs of vector fields X±
ε and X̃±

ε generating N±
ε . The operators

Dm,X̃±

0
and Dm,X±

0
are then simply related by

Dm,X̃±

0
Y = Dm,X±

0
Y +

[
Ỹ , X+

0 − X−

0 −

(
X̃+

0 − X̃−

0

)]
m
.

According to Lemma 3, both differences X+

0 − X̃+

0 and X−

0 − X̃−

0 are tangent toN0 and therefore

so is X+

0 − X−

0 −

(
X̃+

0 − X̃−

0

)
. Since Dm,X̃±

0
(Y ) and Dm,X±

0
(Y ) are independent of the choice of

the extension Ỹ , we can choose it to be tangent to N0. Therefore, the Lie bracket is also tangent
to N0. This implies that img Dm,X±

0
is transverse to TmN0 iff img Dm,X̃±

0
is. �

We give now an equivalent and convenient criterion for the infinitesimal transversality.



N. Roy / Journal of Geometry and Physics 56 (2006) 2203–2229 2209

Lemma 10. Let N±
ε be families of compact submanifolds. There exist generating vector fields

X±
ε such that for any infinitesimal intersection m ∈ N0, the space img

(
Dm,X±

0

)
does not

intersect TmN0. For such X±
ε , m is transverse iff

dim
(

ker Dm,X±

0

)
= 2 dimN0 − dimM.

Proof. First, proceeding as in the proof of Lemma 2, we reduce to families of submanifolds
in a neighbourhood O of the zero-section of a vector bundle over N0, and we can choose the
generating vector fields to be vertical translations. Moreover, if for the evaluation Dm,X±

0
(Y ) :=[

Ỹ , X+

0 − X−

0

]
m

we choose an extension Ỹ which is a lift of a vector field on N0, then

the Lie bracket is vertical. This implies that the intersection img
(

Dm,X±

0

)
∩ TmN0 reduces

to {0}. For the second point, we notice that the vector spaces img
(

Dm,X±

0

)
and TmN0 are

transverse in TmM iff the dimension of the intersection img
(

Dm,X±

0

)
∩ TmN0 is equal to

dim
(

img Dm,X±

0

)
+ dim TmN0 − dim TmM. Since the intersection is {0}, the transversality

condition amounts to requiring that dim
(

img Dm,X±

0

)
+ dim TmN0 − dim TmM = 0. Using

then the fact that dim
(

img Dm,X±

0

)
= dimN0 − dim

(
ker Dm,X±

0

)
, we obtain the claimed

expression. �

We now state the theorem which shows that the infinitesimal transversality is the good notion
for our problem.

Theorem 11. Let N±
ε ⊂ M be families of compact submanifolds. If m ∈ N0 is a transverse

infinitesimal intersection, then near m there is a smooth family of submanifolds Λε with Λ0 ⊂ N0
and Λε = N+

ε ∩N−
ε for small enough ε 6= 0.

Proof. The proof consists of four arguments.

• First, applying the Tubular Neighbourhood Theorem for N0, we transpose the situation to
a compact neighbourhood of the zero-section of a vector bundle E over N0. Denote by
π : E → N0 the projection and ι : N0 → E the inclusion map. For small enough ε, the
manifolds N±

ε are the graphs of sections, denoted by α±
ε : N0 → E , with π ◦ α±

ε = IN0 ,
which satisfy α±

0 = 0. Then, we choose generating vector fields X±
ε which are vertical and

constant on the fibres. In other words, we have X±
ε =

dα±
ε

dε if we identify the fibres with their
tangent space.

• Second, denote byNε =

(
φε

X−
ε

)−1 (
N+
ε

)
and αε : N0 → E the associated family of sections.

One checks easily that N+
ε and N−

ε intersect transversally at a point m iff Nε and N0 do at

the point
(
φε

X−
ε

)−1
(m). Moreover, a point m ∈ N0 is a transverse infinitesimal intersection

forN+
ε andN−

ε iff it is so forNε andN0. Indeed, the flow generatingNε is
(
φε

X−
ε

)−1
◦ φε

X+
ε

whose vector field, denoted by Xε, is equal to
(
φε

X−
ε

)−1

∗

(
X+
ε − X−

ε

)
. For ε = 0, one has

simply X0 = X+

0 − X−

0 , which proves that the operators
[
., X+

0 − X−

0

]
and [., X0 − 0]

coincide.
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• Then, consider the fibrewise dilation by a constant number 1
ε
, which is a diffeomorphism of

E and leaves the zero-sectionN0 invariant. This means that α̃ε =
αε
ε

is still a section, and it is

smooth with respect to ε even at ε = 0 since α0 = 0. Namely, one has α̃0 =
dαε
dε

∣∣∣
ε=0

which is

nothing but X0, provided the fibres are identified with their tangent space. We denote by Ñε
the graph of the section α̃ε, which is thus a smooth family of manifolds. Since the dilatation
is a diffeomorphism for all ε 6= 0, then Nε and N0 intersect transversally for all ε 6= 0 iff Ñε
and N0 do. Now, we know from the general transversality theory that if Ñ0 and N0 intersect
transversally at some point m, then for small enough ε the intersection of Ñε and N0 near m
is a smooth manifold depending smoothly on ε.

• Finally, we show that if m ∈ N0 is a “transverse infinitesimal intersection” of Nε and N0 in
the sense of Definition 8, then it is actually a transverse intersection (in the usual sense) of Ñ0
and N0. This can easily be deduced from the following formula

(α̃0)∗ (Y ) = ι∗Y + Dm,X0 Y (1)

which holds for each Y ∈ TmN0. To show this formula, we first use α̃0 = φ1
X0

◦ ι and thus

(α̃0)∗ (Y ) =

(
φ1

X0

)
∗

ι∗Y . Let Ỹ ∈ Γ (T E) be any extension to E of ι∗Y , i.e., a vector field on

E satisfying ι∗Ym = Ỹm . We have(
φ1

X0

)
∗

Ỹ = Ỹ +

∫ 1

0

d
dt

((
φt

X0

)
∗

Ỹ
)

dt.

By definition of the Lie bracket, we obtain(
φ1

X0

)
∗

Ỹ = Ỹ +

∫ 1

0

(
φt

X0

)
∗

[
Ỹ , X0

]
dt.

Let us choose Ỹ to be a lift of a vector field on the base N0. Since X0 is vertical, it follows
that the Lie bracket

[
Ỹ , X0

]
is also vertical, as well as

(
φt

X0

)
∗

[
Ỹ , X0

]
. If m ∈ N0 is an

infinitesimal intersection of Nε and N0, i.e., a point where α̃0 vanishes, then the vector field
X0 vanishes everywhere on the fibre above m and the flow φt

X0
restricted to this fibre Mq is

the identity for all t . Thus, at such a point m, one has
∫ 1

0

(
φt

X0

)
∗

[
Ỹ , X0

]
dt =

[
Ỹ , X0

]
m

=

Dq,X0 (Y ) which proves the formula (1). �

1.2. Intersections with constraints

Suppose now that the two families N±
ε are constrained to an intermediate compact

submanifold Pε for all ε, i.e., N±
ε ⊂ Pε ⊂ M, where Pε is a smooth family of submanifolds

of codimension at least 1. The submanifolds N±
ε are thus in no way transverse in M but they

may be so in Pε if an appropriate infinitesimal transversality condition is satisfied, as we prove
in Theorem 15. But first of all, we prove the following.

Lemma 12. Let N±
ε ⊂ Pε ⊂ M be two families of constrained compact submanifolds. There

exist generating vector fields X±
ε which generate Pε in the same time.

Proof. First, let ψε be a flow generating the family Pε and consider the families Ñ±
ε :=

ψ−1
ε

(
N±
ε

)
. These families satisfy Ñ±

0 = N0 and they are included in the fixed manifold P0

since ψε (P0) = Pε. Therefore, there exist generating flows for Ñ±
ε inside P0, i.e., families of
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diffeomorphisms ϕ±
ε : P0 → P0, with vector fields Y ±

ε , such that ϕ±
ε (N0) = Ñ±

ε and Y +

0 − Y −

0
is not tangent to N0. Extending these flows to families of diffeomorphisms on M, we obtain
generating flows χ±

ε of Ñ±
ε on M with the property that χ±

ε (P0) = P0, and with vector fields
Z±
ε satisfying Z+

0 − Z−

0 not tangent toN0. This implies that the families φ±
ε := ψε ◦χ

±
ε generate

N±
ε and satisfy φ±

ε (P0) = Pε. �

Definition 13. Let N±
ε ⊂ Pε ⊂ M be two families of constrained compact submanifolds. An

infinitesimal intersection m ∈ N0 is called transverse in the constraint whenever img Dm,X±

0
is transverse to TmN0 in TmP0, i.e.,

img Dm,X±

0
⊕ TmN0 = TmP0,

with X±
ε any generating vector fields.

To check that this notion is well-defined, one has to verify two facts. First, the image
img Dm,X±

0
is in TmP0. Indeed, for any Y ∈ TmN0 we can choose an extension Ỹ which is tangent

to both N0 and P0, hence Dm,X̃±

0
(Y ) =

[
Ỹ , X+

0 − X−

0

]
m

lies in P0 since Ỹ and X+

0 − X−

0 do.

Second, this notion of transversality is independent of the choice of the generating vector fields
X±
ε , as one can check easily following the proof of Lemma 9.
As before, we have an equivalent criterion for transverse infinitesimal intersections, in terms

of dim
(

ker Dm,X±

0

)
. With the help of Lemma 12, Lemma 10 transposes straightforwardly to the

context with constraint, as follows.

Lemma 14. Let N±
ε ⊂ Pε ⊂ M be two families of constrained compact submanifolds. There

exist generating vector fields X±
ε such that for any infinitesimal intersection m ∈ N0, the space

img
(

Dm,X±

0

)
does not intersect TmN0. For such X±

ε , m is transverse in the constraint iff

dim
(

ker Dm,X±

0

)
= 2 dimN0 − dimP0.

Theorem 15. Let N±
ε ⊂ Pε ⊂ M be two families of constrained compact submanifolds. If

m ∈ N0 is a transverse infinitesimal intersection in the constraint, then in a neighbourhood of
m there is a smooth family of submanifolds Λε with Λ0 ∈ N0 and Λε = N+

ε ∩ N−
ε for small

enough ε 6= 0.

Proof. Let us choose a flow ψε generating Pε and denote by Zε its associated vector field. First,
one proves that a point m ∈ N0 is a transverse infinitesimal intersection of N+

ε and N−
ε in

the constraint Pε iff it is a transverse infinitesimal intersection of ψ−1
ε

(
N+
ε

)
and ψ−1

ε

(
N−
ε

)
in the constraint P0, where P0 is understood here as the constant family P0 = Pε. Indeed, let
us define Ñ±

ε := ψ−1
ε

(
N±
ε

)
. Suppose that m is a transverse infinitesimal intersection of N+

ε

and N−
ε in the constraint Pε, i.e., img Dm,X±

0
⊕ TmN0 = TmP0, where X±

ε generates N±
ε .

The family ψ−1
ε

(
N±
ε

)
is generated by the flow ψ−1

ε ◦ φε
X±
ε

whose associated vector field X̃±
ε

equals
(
ψ−1
ε

)
∗

(
−Zε + X±

ε

)
. For ε = 0, this reduces X̃±

0 = −Z0 + X±

0 . Consequently, we have

X̃+

0 − X̃−

0 = X+

0 − X−

0 and thus Dm,X̃±

0
= Dm,X±

0
. Since Ñ0 = N0, we have shown that

img Dm,X±

0
⊕ TmN0 = TmP0 is equivalent to img Dm,X̃±

0
⊕ TmN0 = TmP0.

Now, since the families Ñ±
ε lie in the fixed submanifold P0, we can apply Theorem 11

which insures that near m there is a smooth family of submanifolds Λ̃ε with Λ̃0 ⊂ N0 and



2212 N. Roy / Journal of Geometry and Physics 56 (2006) 2203–2229

Λ̃ε = Ñ+
ε ∩ Ñ−

ε for small enough ε 6= 0. Applying then the family of diffeomorphisms ψε, we
obtain the claimed result for the intersections of the families N±

ε . �

1.3. Lagrangian intersections

Let us suppose now thatM is endowed with a symplectic structure ω and that the families of
submanifolds N±

ε are Lagrangian for all ε.

1.3.1. Mel’nikov 1-form for pairs of Lagrangian submanifolds

Definition 16. Let N±
ε ⊂ M be two families of compact Lagrangian submanifolds. The

Mel’nikov 1-form β ∈ Ω1 (N0) is defined by

β := ι∗
((

X+

0 − X−

0

)
yω
)
,

where ι : N0 ↪→M is the inclusion map and X±
ε are any generating vector fields.

Lemma 17. The Mel’nikov 1-form is well-defined, i.e., independent of the choice of X±
ε , and it

is a closed form, dβ = 0.

Proof. First, if X̃±
ε is a second pair of generating vector fields, we know from Lemma 3 that

both differences X+

0 − X̃+

0 and X−

0 − X̃−

0 are tangent to N0, and therefore so is the vector field

Z = X+

0 − X−

0 −

(
X̃+

0 − X̃−

0

)
. If we denote by β (resp. β̃) the Mel’nikov 1-form defined with

X±
ε (resp. X̃±

ε ), we have the relation β = β̃ + ι∗ (Zyω). The second term vanishes since Z is
tangent to N0 which is Lagrangian and therefore β = β̃.

Second, for each ε the pull-back ι∗
(
φε

X±
ε

)∗

ω vanishes on N0 since φε
X±
ε

◦ ι (N0) =

N±
ε and the manifolds N±

ε are Lagrangian. Taking the derivative with respect to ε and

using Cartan’s formula together with dω = 0, one obtains ι∗
(
φε

X±
ε

)∗

d
(
X±
ε yω

)
= 0, i.e.,

d
(
ι∗
(
φε

X±
ε

)∗ (
X±
ε yω

))
= 0. Then, for ε = 0 one has d

(
ι∗
(
X±

0 yω
))

= 0 and the difference

between the term with X+
ε and the one with X−

ε gives exactly dβ = 0. �

In this symplectic context, one can conveniently reformulate the infinitesimal transversality
condition in terms of β instead of X+

0 − X−

0 .

Lemma 18. Let N±
ε ⊂ M be two families of compact Lagrangian submanifolds and β the

Mel’nikov 1-form. A point m ∈ N0 is an infinitesimal intersection iff β vanishes at m.

Proof. The “only if” part of the assumption is obvious. In order to the “if” part, let us assume that
β = 0 at the point m. By definition, this means that ω

(
X+

0 − X−

0 , ι∗Z
)

= 0 for all Z ∈ TmN0.
This implies that X+

0 − X−

0 is in the ω-orthogonal of TmN0 which is TmN0 itself, since N0

is Lagrangian. But, X+

0 − X−

0 is by assumption (Lemma 2) never tangent to N0. Therefore
X+

0 − X−

0 = 0 at m. �

Lemma 19. Let N±
ε ⊂ M be two families of compact Lagrangian submanifolds and β

the Mel’nikov 1-form. If m ∈ N0 is an infinitesimal intersection, then the derivative ∇β :

TmN0 × TmN0 → R defined by

(∇β) (Y, Z) = Y
(
β
(

Z̃
))
,

with Z̃ ∈ Γ (TN0) any extension of Z, is a well-defined symmetric bilinear form.
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Proof. Indeed, by definition of the Lie derivative, one has Y
(
β
(

Z̃
))

= LỸ

(
β
(

Z̃
))

, where Ỹ

is any extension on N0 of Y . Then, the Leibniz rule gives Y
(
β
(

Z̃
))

= Z̃yLỸβ +

(
LỸ Z̃

)
yβ.

The second term vanishes at the point m since β does. Then, applying Cartan’s formula to the
first term, we obtain

Y
(
β
(

Z̃
))

= Z̃y
(

Ỹ y dβ + d
(
β
(

Ỹ
)))

.

The first term vanishes since β is closed. We thus have Y
(
β
(

Z̃
))

= Z
(
β
(

Ỹ
))

which is

independent of the choice of the extension Z̃ . �

We remark that the use of the symbol ∇ is well justified since the derivative (∇β) (Y, Z) is

easily shown to be equal to
(
∇

′β
) (

Ỹ , Z̃
)

m
, where ∇

′ is any covariant derivative and Ỹ , Z̃ are

any extensions to N0 of Y, Z . The derivative ∇β is related to Dm,X±

0
as follows.

Lemma 20. LetN±
ε ⊂M be two families of compact Lagrangian submanifolds, X±

ε generating
vector fields and β the Mel’nikov 1-form. For any infinitesimal intersection m ∈ N0, we have the
following relation

(∇β) (Y, Z) = ω
(

Dm,X±

0
(Y ) , i∗Z

)
,

for all Y, Z ∈ TmN0.

Proof. By definition, one has (∇β) (Y, Z) = LỸ

(
β
(

Z̃
))

, with Ỹ ∈ Γ (TN0) (resp. Z̃ ∈

Γ (TN0)) any extension of Y (resp. Z ). The Leibniz rule gives Y
(
β
(

Z̃
))

= ZyLỸβ +(
LỸ Z̃

)
yβ. The second term vanishes at the point m since β does and introducing the definition of

β in the first term gives Y
(
β
(

Z̃
))

= ZyLỸ

(
ι∗
((

X+

0 − X−

0

)
yω
))

. If we choose any extension

Y ′ on M of ι∗Ỹ , we have Y
(
β
(

Z̃
))

= Zyι∗
(
LY ′

((
X+

0 − X−

0

)
yω
))

. Using once again the

Leibniz rule provides

Y
(
β
(

Z̃
))

= Zyι∗
([

Y ′, X+

0 − X−

0

]
yω +

(
X+

0 − X−

0

)
yLY ′ω

)
.

The second term vanishes at m since X+

0 − X−

0 does and the first term is precisely

Zyι∗
(

Dm,X±

0
(Y )yω

)
, i.e., ω

(
Dm,X±

0
(Y ) , ι∗Z

)
. �

This equality has the following corollary.

Lemma 21. Let N±
ε ⊂ M be two families of compact Lagrangian submanifolds and β

the Mel’nikov 1-form. There exist generating vector fields X±
ε such that for any infinitesimal

intersection m ∈ N0, the space img
(

Dm,X±

0

)
does not intersect TmN0. For such X±

ε , we have

the relation

ker Dm,X±

0
= ker ∇β.
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Proof. Indeed, thanks to the relation given in Lemma 20, we see that ker Dm,X±

0
⊂ ker ∇β. The

converse inclusion ker Dm,X±

0
⊃ ker ∇β is proved as follows. First, the existence of generating

vector fields X±
ε with the announced property is proved in 10. Therefore, if (∇β) (Y, Z) = 0 for

all Z ∈ TmN0 then Dm,X±

0
(Y ) must lie in the ω-orthogonal of TmN0, which is TmN0 itself. But

this is a contradiction and therefore Dm,X±

0
(Y ) must vanish. �

1.3.2. Constrained intersections for Lagrangian submanifolds

We suppose now that our Lagrangian submanifolds N±
ε are constrained to an intermediate

submanifold Pε for all ε, as described on Section 1.2. Thanks to Lemma 21, the criterion given
in Lemma 14 transposes straightforwardly to the Lagrangian case, as follows.

Lemma 22. Let N±
ε ⊂ Pε ⊂ M be two families of constrained compact Lagrangian

submanifolds and β be the Mel’nikov 1-form. Then, an infinitesimal intersection m is transverse
in the constraint iff

dim (ker ∇β) = codimP0.

We can actually say more than this. Indeed, since P0 contains the Lagrangian manifold N0,
it must be coisotropic and the associated isotropic foliation (TmP0)

⊥satisfies (TmP0)
⊥

⊂ TmN0
for all m ∈ N0. Moreover, the dimension of the isotropic foliation is exactly equal to codimP0.
This allows us to show Proposition 24 which will be easily deduced from the following lemma.

Lemma 23. Let N±
ε ⊂ M be two families of compact Lagrangian submanifolds and β the

Mel’nikov 1-form. If Fε ∈ C∞ (M) is a family of smooth functions constant onN+
ε and N−

ε for
all ε, then the Hamiltonian vector field X F0 is tangent to N0 and satisfies

βyX F0 = 0

everywhere on N0.

Proof. Let X±
ε be vector fields generating the families N±

ε . The Mel’nikov 1-form is related to
them by β = ι∗

((
X+

0 − X−

0

)
yω
)
. By hypothesis, there exists a family of real numbers cε such

that Fε ◦ φε
X±
ε

◦ ι = cε for all ε, where ι : N0 ↪→ M is the inclusion map. Taking the derivative
with respect to ε, one obtains(

Fε
dε

+ X±
ε (Fε)

)
◦ φε

X±
ε

◦ ι =
dcε
dε
.

Denoting by a dot the derivatives with respect to ε, one has(
Ḟ0 + X±

0 (F0)
)
◦ ι = ċ0,

since
(
φε

X±
ε

)
ε=0

= I. The difference between the term with X+

0 and the one with X−

0 gives

simply
(
X+

0 − X−

0

)
(F0) ◦ ι = 0. Now, by definition of the Hamiltonian vector field X F0 ,

the function
(
X+

0 − X−

0

)
(F0) is equal to ω

(
X+

0 − X−

0 , X F0

)
. Moreover, X F0 is tangent to N0

because at each m ∈ N0, the Lagrangian space TmN0 is included in ker (dF0)m . This implies
that ω

(
X+

0 − X−

0 , X F0

)
is simply β

(
X F0

)
and the result follows. �
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Proposition 24. Let N±
ε ⊂ Pε ⊂ M be two families of constrained compact Lagrangian

submanifolds and β the Mel’nikov 1-form. Then an infinitesimal intersection m ∈ N0 is
transverse in the constraint iff

ker ∇β = (TmP0)
⊥ .

Proof. First, there exist p smooth families of linearly independent functions F (1)ε , . . . , F (p)ε ∈

C∞ (M), where p = codimPε, such that in a neighbourhood of m the manifold Pε is given by

the common level set Pε =

{
m | F (1)ε (m) = c(1)ε , . . . , F (p)ε (m) = c(p)ε

}
, where c( j)

ε are families

of real numbers. Applying the preceding lemma, we obtain that X
F ( j)

0
is tangent to N0 and

satisfies βyX
F ( j)

0
= 0 everywhere on N0, for each j = 1, . . . , p. Now, at each m ∈ N0 the

vectors X
F ( j)

0
form a basis of (TmP0)

⊥. This implies that (TmP0)
⊥

⊂ kerβ everywhere on

N0. Therefore, if m is an infinitesimal intersection, then for each Z ∈ (TmP0)
⊥

⊂ TmN0, one

has (∇β) (Y, Z) = Y
(
β
(

Z̃
))

= 0 since we can choose the extension Z̃ to be everywhere in

(TmP0)
⊥. For such a Z̃ , one has β

(
Z̃
)

everywhere and therefore (∇β) (Y, Z) = 0 for all Y .

This shows that (TmP0)
⊥

⊂ ker ∇β. This inclusion together with the transversality condition
dim (ker ∇β) = dim (TmP0)

⊥ of Lemma 14 proves the result. �

2. The Mel’nikov 1-form

In the previous section, we developed tools for dealing with pairs N±
ε of families of

Lagrangian submanifolds, with the same limit N0 := N+

0 = N−

0 and constrained for all ε
to a submanifold Pε. We will now use these tools to deal with the situation where N±

ε are
respectively the stable and unstable manifolds of transversally hyperbolic periodic orbits of a
given Hamiltonian onM. The Mel’nikov 1-form introduced in Definition 16 allows us to detect
the presence of intersections of N−

ε and N+
ε , i.e., heteroclinic orbits between the two periodic

orbits. After setting precisely the heteroclinic and homoclinic situation we will deal with, we
show that the Mel’nikov 1-form admits an integral expression whenever the Hamiltonian is
completely integrable. This integral is unfortunately not convergent in general and needs a
prescription on the way we take the limit. Nevertheless, we consider two cases in which this
integral is convergent. In particular, this encompasses the historical Mel’nikov set-up (time-
periodic perturbation of time-independent systems) which is presented as a conclusion of this
paper.

2.1. Heteroclinic and homoclinic motions

2.1.1. Stable and unstable manifolds of transversally hyperbolic orbits
Suppose the dimension ofM is at least 4. Let H ∈ C∞ (M) be a Hamiltonian and denote by

X H its vector field and by φt its flow. We recall here some basic facts about stable and unstable
manifolds of transversally hyperbolic periodic orbit and refer the reader to e.g. [1] for more
details.

Definition 25. A τ -periodic orbit γ of X H is called (transversally) non-degenerate whenever
the eigenvalue λ = 1 of the derivative map φτ∗ at some point m ∈ γ has multiplicity 2.
If moreover the other eigenvalues do not lie on the unit circle, γ is called (transversally)
hyperbolic.
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Note that the eigenvalues of the map φτ∗ always come in pairs
(
λ, λ−1

)
since φτ is a symplectic

map. On the other hand, at the point m the vector X H itself is obviously an eigenvector with
eigenvalue 1.

It is well known that the nondegeneracy condition implies that such a periodic orbit always
arises within an orbit-cylinder Γ , i.e., there is an embedding Γ : S1

× [a, b] → M, with
H (γ ) ∈ [a, b], such that for each E ∈ [a, b], the circle γE = Γ

(
S1

× {E}
)

is a closed orbit of
X H and moreover Γ is transversal to the energy surfaces {m; H (m) = E}.

Furthermore, the hyperbolicity of a periodic orbit γ implies the existence of the so-called
stable and unstable manifolds. The stable (resp. unstable) manifold is the set, denoted by N+

(resp. N−) of points m ∈ M such that φt (m) tends to the limit cycle γ when t → +∞

(resp. t → +∞). One is usually obliged to distinguish between the local and the global
(un)stable manifolds. Indeed, the hyperbolicity condition implies that in a neighbourhood of
γ , there exist two embedded Lagrangian submanifolds N+

loc and N−

loc, called the local stable and
unstable manifolds, whose intersection is exactly γ . The global stable and unstable manifolds
are then obtained from the local ones by applying the flow φt for all t , and in general they are
injectively immersed inM in a very complicated way.

In the following, we will need to focus on a compact part of the stable and unstable manifolds.
For this purpose, we define the following.

Definition 26. For each T > 0, we define the compact manifold N±

T := φ∓T
(
N±

loc

)
.

These manifolds depend of course on the choice of the local manifolds N±

loc, but they satisfy
N±

T ⊂ N±

T ′ for all T < T ′, and limT →+∞N±

T = N±.
We remark that in dimension 4, the manifolds N±

loc (and thus N±

T as well) may be such that
N±

loc \ γ has two connected components, say N±

1 and N±

2 , as depicted on the left hand side
below.
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In that case, N±

T will rather denote φ∓T
(
N±

j

)
with the choice of a connected component2

j = 1 or 2. Also, N± will denote one component of the (un)stable manifold rather than the full
manifold. In higher dimensions, this distinction is irrelevant since the manifolds N±

loc \ γ are
connected.

2.1.2. Heteroclinic and homoclinic motions
Let H0 ∈ C∞ (M) be a Hamiltonian which admits two hyperbolic periodic orbits γ+

0 and
γ−

0 , and denote by φt its flow. As explained in the previous section, the orbit γ+

0 (resp. γ−

0 )
has a stable and an unstable manifold N±

(
γ+

0

)
(resp. N±

(
γ−

0

)
). Let us focus now on the two

manifoldsN+
(
γ+

0

)
andN−

(
γ−

0

)
. Any point m ∈ N+

(
γ+

0

)
∩N−

(
γ−

0

)
is called a heteroclinic

point and its orbit t → φt (m) is a heteroclinic orbit between γ−

0 and γ+

0 , i.e., it tends to
γ−

0 (resp. γ+

0 ) when t → −∞ (resp. t → +∞). When the two periodic orbits coincide
γ0 = γ+

0 = γ−

0 , then any point in N+ (γ0) ∩ N− (γ0) is called a homoclinic point and its
orbit t → φt (m) is a homoclinic orbit, i.e., it tends to γ0 when t → ± − ∞.

In general, the two manifolds N+
(
γ+

0

)
and N−

(
γ−

0

)
have no reason to coincide and the set

of heteroclinic points may be very complicated.

Nevertheless, Mel’nikov’s theory deals precisely with perturbations Hε of a Hamiltonian H0
with two hyperbolic periodic orbits γ+

0 and γ−

0 such that the closure of the stable manifolds
N+

(
γ+

0

)
does coincide with the closure of the unstable manifold N−

(
γ−

0

)
. We introduce the

following notation.

Definition 27. We define N±

0 := N±
(
γ±

0

)
. In the 4-dimensional case, N±

(
γ±

0

)
denotes one

connected component of the (un)stable manifold, as explained in the previous section.

Definition 28. From now on, we focus on the following two situations:

• Heteroclinic situation. We suppose that the Hamiltonian H0 admits two hyperbolic periodic
orbits γ+

0 and γ−

0 . Moreover, we suppose that the closure of the stable manifold N+

0 of
γ+

0 coincides with the closure of the unstable manifold N−

0 of γ−

0 , and we denote by

N0 = N+

0 = N−

0 this heteroclinic manifold.
• Homoclinic situation. We suppose that the Hamiltonian H0 admits one hyperbolic periodic

orbit γ0. Moreover, we suppose that the closures of its stable and unstable manifolds coincide,

and we denote by N0 = N+

0 = N−

0 this homoclinic manifold.

2 See e.g. [4] for a study of 4-dimensional completely integrable systems with transversally hyperbolic periodic orbits.
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Although in general the manifolds N+

0 and N−

0 are immersed in M in a complicated way,

when N+

0 and N−

0 coincide, then they have the following nice form.

Lemma 29. There is a time κ such that N+

0,κ ∪ N−

0,κ = N0, where N±

0,κ denote the manifolds
defined in Definition 26. Moreover, one has

lim
κ→+∞

N+

0,κ ∩N−

0,κ = N0.

In the picture below, the thin lines represent N0 while the thick ones represent N±

0,κ .

2.2. Heteroclinic/homoclinic orbits and the Mel’nikov 1-form

2.2.1. Splitting of heteroclinic/homoclinic Lagrangian submanifolds and the Mel’nikov 1-form

Let H0 ∈ C∞ (M) be a Hamiltonian either in the heteroclinic or in the homoclinic situation
(see Definition 28) and let N±

0,κ be the corresponding manifolds for a chosen large κ > 0. A
very important consequence of the hyperbolicity of the periodic orbits γ±

0 is that the system
is structurally stable [8]. This means that if Hε ∈ C∞ (M) is a perturbation of H0, then in a
neighbourhood of γ±

0 there is a hyperbolic periodic orbit γ±
ε of Hε ε-close to γ±

0 . Moreover, the
stable and unstable manifolds of Hε are ε-close to those of γ±

ε . Actually, the smoothness of Hε
with respect to ε implies the smoothness of γ±

ε and N±
ε .

Restricting to a compact part as in Definition 26, we thus have two families of periodic orbits
γ±
ε together with two families of manifolds N±

ε,κ and we want to detect at first order in ε the
intersections N+

ε,κ ∩ N−
ε,κ for small ε using the Mel’nikov 1-form defined in the first section.

Unfortunately, we are not strictly speaking in the Mel’nikov setting since N+

0,κ and N−

0,κ do not
coincide exactly. Nevertheless, for large κ the intersection N+

0,κ ∩N−

0,κ tends to N0. In order to
avoid a useless complexification of the notations, we will make a slight misuse of notation by
using the Mel’nikov 1-form β ∈ Ω1 (N0) for the families N±

ε,κ , being implicitly understood that
it is defined only inside the intersection N+

0,κ ∩N−

0,κ , i.e., away from the periodic orbits γ±

0 .

Since the system is Hamiltonian, the families N±
ε,κ are included in a level set Hε = cst (ε)

for each ε and we are thus in the constrained setting developed in Section 1.3.2. We know from
there that the transverse infinitesimal intersections of N+

ε,κ and N−
ε,κ are slightly deformed by

the perturbation, and this shows that the Mel’nikov 1-form is the right object for detecting the
existence of some of the intersections of N+

ε,κ and N−
ε,κ when ε 6= 0, i.e., heteroclinic points

between γ−
ε and γ+

ε .
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2.2.2. An invariance property of the Mel’nikov 1-form
Let Hε ∈ C∞ (M) be a perturbation of a Hamiltonian H0 ∈ C∞ (M) either in the

heteroclinic or in the homoclinic situation, and let β ∈ Ω1 (N0) be the associated Mel’nikov
1-form. Lemma 23 says that β

(
X H0

)
= 0 everywhere on N0. This implies that the zeros of the

Mel’nikov 1-form come together with their orbit, as explained below.

Lemma 30. If m ∈ N0 is an infinitesimal intersection, βm = 0, then each point of the orbit
φt

X H0
(m) is so. If m is transversal in the constraint then each point of the orbit φt

X H0
(m) is so.

Proof. The first point comes directly from Cartan’s formula LX H0
β = X H0ydβ + d

(
β
(
X H0

))
.

The first term vanishes since β is closed and the second one vanishes thanks to Lemma 23. The
Mel’nikov 1-form is thus invariant by the flow of X H0 and the first point is proved. To prove the
second one, let us choose an affine connection ∇ such that ∇ X H0 = 0 in the neighbourhood O
of a transversal infinitesimal intersection m. This is always possible since X H0 does not vanish
on N0. We will show that LX H0

(∇β) = 0 and this will prove the second point. To evaluate
LX H0

(∇β) (Y, Z) at a point m, we extend Y and Z toO in such a way that ∇Y = 0 and ∇Z = 0.
Since X H0 , Y and Z are parallel vector fields, they commute with each other. This implies that

LX H0
(∇β) (Y, Z) = LX H0

((∇β) (Y, Z)) = LX H0
(Y (β (Z))) .

The Leibniz rule for the Lie derivative then gives

LX H0
(Y (β (Z))) = Y

((
LX H0

β
)
(Z)

)
and this vanishes as we have shown earlier. The (2, 0)-tensor field ∇β is thus invariant by the
flow of X H0 . According to Proposition 24, a point m is a transversal infinitesimal intersection, iff
ker ∇β is exactly the line generated by X H0 . Now, since X H0 and ∇β are invariant by the flow
of X H0 , then we have(

φ−t
X H0

)∗ (
X H0y∇β

)
m =

(
X H0y∇β

)
φt

X H0
(m) .

This means that ker ∇β at m is generated by X H0 iff it is so at each point of the orbit
φt

X H0
(m). �

2.2.3. Mel’nikov potentials

Lemma 31. The Mel’nikov 1-form β is exact. Any primitive, i.e., any function L ∈ C∞ (N0)

with β = dL, is called a Mel’nikov potential.

Proof. We already know from Lemma 17 that β is closed. Therefore, it is exact if
∫
γ
β = 0 for

cycles γ generating the homology group H1 (N0). Actually, we see from Definition 16 that β
is a difference β = β+

− β−, where the β± are closed 1-forms defined on N0 \ γ∓

0 . Now, the
manifoldsN0 \γ∓

0 are diffeomorphic to S1
×Rd−1 (or S1

×R+ for some 4-dimensional systems,
as explained at the end of Section 2.1.1). Their homology is thus generated precisely by the cycle
γ±

0 . But these are trajectories of H0. Therefore, one has∫
γ±

0

β±
=

1
τ±

∫ τ±

0
β±

(
X H0

)
◦ φs

X H0
(m0) ds,
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with m0 any point on γ±

0 and τ± the period of the orbit γ±

0 . Using Lemma 23, we conclude that∫
γ±

0
β = 0 and therefore β is exact. �

Despite this apparently pleasant property, we will not use Mel’nikov potentials, for several
reasons. First of all, the object which parameterises the deformations of the Lagrangian
(stable and unstable) submanifolds is really a closed 1-form and not its primitive. Second, the
heteroclinic points are detected by the zeros of β, i.e., the critical points of a primitive L . Thus,
in any case, one has to compute the derivative of L . Third, it might happen that β admits a nice
integral expression, but L does not, as we explain later in Section 2.3.5.

2.3. Integral expression in the CI Case

Consider a Hamiltonian H0 ∈ C∞ (M) either in the heteroclinic or in the homoclinic situation
and let Hε ∈ C∞ (M) be a perturbation. The definition of the Mel’nikov 1-form associated with
the deformed stable and unstable manifolds does actually not take into account the dynamical
character of these manifolds. But, we will now show that there is an integral expression for
the contraction β (X A), when A is any conserved quantity, i.e., a function on M satisfying
{A, H0} = 0.

When such a conserved quantity A exists, the dynamical character of the system allows one
to give an integral expression for β (X A), which corresponds in some special cases to the object
called the Mel’nikov function presented in the literature. Unfortunately, in the general case this
integral does not converge and one has to give a prescription to make it converge. We explain
this issue in Section 2.3.2. Nevertheless, there are two cases where the integral converges. They
are discussed in Sections 2.3.3 and 2.3.4. First, we describe the situation where the perturbation
is critical on the orbits γ+

0 and γ−

0 . Finally, we consider the case when the conserved quantity
A is critical on γ+

0 and γ−

0 . We notice that in order to describe completely β, one needs to have
d Hamiltonian vector fields X A1 , . . . , X Ad tangent to N0 and linearly independent. This arises
precisely when H0 is completely integrable and the A j ’s are the components of a momentum
map. In Section 2.3.4, we explain how many linearly independent A j ’s critical on the orbits γ+

0
and γ−

0 one can have.

2.3.1. Momentum maps in the presence of transversally hyperbolic periodic orbits
The presence of a hyperbolic periodic orbit for a Hamiltonian H implies certain properties for

its conserved quantities A, {A, H} = 0, as follows.

Proposition 32. Suppose H has a transversally hyperbolic periodic orbit γ . Then, each
conserved quantity A is constant on the stable and unstable manifolds N± (γ ), i.e.,
A
(
N+ (γ )

)
= A

(
N− (γ )

)
= A (γ ), and its vector field X A is tangent to N+ (γ ) and N− (γ ).

Moreover, there is a constant c (A) such that X A = c (A) X H at each point of γ .

Proof. The commutation relation {A, H} = 0 implies that the orbits of X H are included in
the level sets {m, A(m) = a}, a ∈ R. In particular one has γ ⊂ {m, A(m) = a} for some a.
Moreover, by definition, for each point m on the stable manifoldN+ (γ ), one has φt

X H
(m) → γ ,

when t → +∞. Since the function A is constant on the trajectories of X H , we must have
A (m) = A ◦ φt

X H
(m) and the limit t → +∞ yields A (m) = A (γ ) for each m ∈ N+ (γ ),

i.e., A is constant on N+ (γ ). A similar argument shows that A is also constant on N− (γ ).
Since N± (γ ) is Lagrangian, the inclusion TmN± (γ ) ⊂ ker d Am at the point m ∈ N± (γ )
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is equivalent by duality to X A ∈ TmN± (γ ). Now, at each point m ∈ γ , the intersection
TmN− (γ ) ∩ TmN+ (γ ) is exactly Tmγ and therefore X A ∈ Tmγ . Consequently, there is a
function c : γ → R such that one has the relation X A = c (m) X H , at m ∈ γ . Moreover, X A is
invariant under the flow of X H , since {H, A} = 0 and thus LX H X A = 0. This implies that c (m)
is independent of m. �

According to Proposition 32, if H0 admits a momentum map A = (A1, . . . , Ad) which is
regular on N0 \

(
γ+

0 ∪ γ−

0

)
, then the Hamiltonian vector fields X A1 , . . . , X Ad form a basis of

TmN0 at each point m ∈ N0 \
(
γ+

0 ∪ γ−

0

)
. Therefore, the Mel’nikov 1-form β ∈ Ω1 (N0)

associated with any perturbation Hε is fully understood whenever one is able to compute the
evaluations β

(
X A1

)
, . . . , β

(
X Ad

)
.

2.3.2. Integral expression with prescription
Thanks to Proposition 32, the vector field X A associated with any conserved quantity A is

tangent to the heteroclinic/homoclinic manifold N0, and one can thus evaluate the Mel’nikov
1-form β on it. This evaluation can be expressed in terms of an integral involving the first-order

perturbation H1 =
dHε
dε

∣∣∣
ε=0

, as the next theorem shows.

Theorem 33. Let H0 ∈ C∞ (M) be a Hamiltonian either in the heteroclinic or in the
homoclinic situation. Let Hε ∈ C∞ (M) be a perturbed Hamiltonian and β ∈ Ω1 (N0) the
associated Mel’nikov 1-form. Then, for any conserved quantity A ∈ C∞ (M) and any point
m ∈ N0/(γ

+

0 ∪ γ−

0 ), one has the following formula

β (X A)m =
d
dε

A
(
m+
ε

)∣∣∣∣
ε=0

−
d
dε

A
(
m−
ε

)∣∣∣∣
ε=0

+ lim
n→∞

∫ nτ+

0

−nτ−

0

{H1, A} ◦ φt
X H0

(m) dt,

where τ±
ε is the period of γ±

ε and the point m±
ε ∈ γ±

ε is given by

m±
ε = lim

n→∞
φ

∓nτ±
ε

X Hε
◦ φε

X±
ε
(m) .

Proof. Fix a constant κ large enough for m to belong to N+

0,κ ∩ N−

0,κ . Remember that the
Mel’nikov 1-form is given in Definition 16 by β = ι∗

((
X+

0 − X−

0

)
yω
)
, where X+

ε (resp. X−
ε )

generates the stable (resp. unstable) manifold N+
ε,κ (resp. N−

ε,κ ) of the orbit γ+
ε (resp. γ−

ε ).
For the evaluation on X A, we have to compute both terms ω

(
X±

0 , X A
)
, which are nothing but

X±

0 (A), i.e., d
dε A ◦ φε

X±
ε
(m)

∣∣∣
ε=0

. Now, by definition of X±
ε , the point φε

X±
ε
(m) is on N±

ε,κ . We

will compute an expression for A ◦ φε
X+
ε
(m) (and later similarly for A ◦ φε

X−
ε
(m)) in terms of an

integral which converges uniformly with respect to ε and then take the derivative. For any time
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T , one has the relation

A ◦ φε
X+
ε
(m) = A ◦ φT

X Hε
◦ φε

X+
ε
(m)−

∫ T

0
X Hε (A) ◦ φt

X Hε
◦ φε

X+
ε
(m) dt,

where we have used d
dt A ◦φt

X Hε
= X Hε (A) ◦φ

t
X Hε

. Now, φε
X+
ε
(m) is on the stable manifoldN+

ε

and φT
X Hε

◦ φε
X+
ε
(m) tends to the cycle γ+

ε when T → ∞. If one considers the discrete times

T = nτ+
ε , with τ+

ε the period of γ+
ε , then φ

nτ+
ε

X Hε
◦ φε

X+
ε
(m) has a limit on γ+

ε when n → ∞ and

this limit is uniform in ε. Indeed, φε
X+
ε
(m) is on the stable manifold of some point m+

ε ∈ γ+
ε ,

i.e., dist
(
φT

X Hε

(
m+
ε

)
, φT

X Hε
◦ φε

X+
ε
(m)

)
≤ Cεe−Tλε for large T . Taking the maximum C over ε

of the constant Cε and the minimum λ of the Lyapunov exponent λε, one obtains

dist
(
φT

X Hε

(
m+
ε

)
, φT

X Hε
◦ φε

X+
ε
(m)

)
≤ Ce−Tλ

for all ε and all T . Now, for T = nτ+
ε one has φ

nτ+
ε

X Hε

(
m+
ε

)
= m+

ε and therefore for all positive
integers n and all ε, one has

dist
(

m+
ε , φ

nτ+
ε

X Hε
◦ φε

X+
ε
(m)

)
≤ 2Ce−nτλ,

where τ = minε τ+
ε . This shows the uniformity with respect to ε of the limit point m+

ε =

limn→∞ φ
nτ+
ε

X Hε
◦ φε

X+
ε
(m), which implies in return the uniformity of the limit of

∫ nτ+
ε

0 X Hε (A) ◦

φt
X Hε

◦ φε
X+
ε
(m) dt . The term X+

0 (A) is thus given by the expression

X+

0 (A) =
d
dε

A
(
m+
ε

)∣∣∣∣
ε=0

−
d
dε

lim
n→∞

∫ nτ+
ε

0
X Hε (A) ◦ φt

X Hε
◦ φε

X+
ε
(m) dt

∣∣∣∣∣
ε=0

.

If we perform a second-order Taylor expansion on Hε with respect to ε, i.e., Hε = H0 + εH1 +

ε2 Kε with Kε depending smoothly on ε, then one has

X Hε (A) = ε {A, H1 + εKε}

since {H0, A} = 0. This gives

X+

0 (A) =
d
dε

A
(
m+
ε

)∣∣∣∣
ε=0

+ lim
n→∞

∫ nτ+

0

0
{H1, A} ◦ φt

X H0
(m) dt,

for all m on N+
ε,κ . A completely similar procedure yields the corresponding expression for

the term X−

0 (A), for all m on N−
ε,κ , and we obtain the claimed expression for β (X A) =

X+

0 (A)− X−

0 (A). �

As mentioned in Section 2.2.1, this integral expression is not valid in the wholeN0, but rather
in N+

0,κ ∩N y−

0,κ for arbitrarily large κ . Indeed, one should keep in mind that the convergence of
the different limits in this expression becomes worse and worse when one let m get closer to γ+

0
or γ−

0 . This reflects the so-called “heteroclinic entanglement” phenomenon that occurs near γ+

0
and γ−

0 .
It might seem to the reader that this integral expression is not very easy to handle, but this is

unfortunately the only one available without any further assumptions. In the next two subsections
though, we consider special cases for which this expression takes a simpler form.



N. Roy / Journal of Geometry and Physics 56 (2006) 2203–2229 2223

2.3.3. Homoclinic case with a perturbation critical on the orbits
When the perturbation is critical on the orbits γ+

0 and γ−

0 , i.e., d (Hε − H0) = 0, then both
cycles remain periodic orbits of the perturbed dynamics Hε for all ε. This means that there is a
family of energies Eε such that the family of orbits γ+

ε , included in the energy levels {Hε = Eε},
is actually constant, i.e., γ+

ε = γ0. This would yield a simplification in the formula of Theorem 33

since the term d
dε A

(
m+
ε

)∣∣∣
ε=0

would vanish and the integral would converge without prescription

on the way to taking the limit. Of course, one could do this rather for the unstable orbit γ−
ε , but

unfortunately it is impossible to do this simultaneously for both γ+
ε and γ−

ε , except when Hε
takes the same value on γ+

ε and γ−
ε . In the heteroclinic situation, this must be an assumption

whereas in the homoclinic one this is automatic. Actually, one can obtain this result assuming

only that the first-order perturbation H1 =
dHε
dε

∣∣∣
ε=0

is critical on γ+

0 and γ−

0 , as the next theorem

shows.

Theorem 34. Let H0 ∈ C∞ (M) be a Hamiltonian either in the heteroclinic or in the homoclinic
situation. Let Hε ∈ C∞ (M) be a perturbed Hamiltonian such that the first-order perturbation
H1 is critical on both orbits γ+

0 and γ−

0 . Moreover, in the heteroclinic situation, assume that
H1
(
γ+

0

)
= H1

(
γ−

0

)
. Let γ±

ε be families of periodic orbits of Hε included in the energy levels
{Hε = Eε}, with E1 = H1

(
γ±

0

)
and let β ∈ Ω1 (N0) be the associated Mel’nikov 1-form. Then,

for any conserved quantity A ∈ C∞ (M) and any point m ∈ N0 \
(
γ+

0 ∪ γ−

0

)
, the following

formula holds:

β (X A)m =

∫
+∞

−∞

{H1, A} ◦ φt
X H0

(m) dt.

Proof. First of all, β (X A)m is given by the formula of Theorem 33. Since m+
ε ∈ γ+

ε one must

have φ
τ+
ε

X Hε

(
m+
ε

)
= m+

ε for all ε, where τ+
ε is the period of γ+

ε . Let us denote by Y ∈ Tm+

0
M

the tangent to the curve m+
ε at ε = 0, and let us prove that Y is tangent to γ+

0 . For any function

f ∈ C∞ (M) one has d
dε f

(
m+
ε

)∣∣∣
ε=0

= Y ( f ) and the previous equality of curves provides

Y ( f ) =
d
dε

f ◦ φ
τ+

0
X H0

(
m+
ε

)∣∣∣∣
ε=0

+
d
dε

f ◦ φ
τ+
ε

X H0

(
m+

0

)∣∣∣∣
ε=0

+
d
dε

f ◦ φ
τ+

0
X Hε

(
m+

0

)∣∣∣∣
ε=0
.

The first term is simply Y

(
f ◦ φ

τ+

0
X H0

)
, i.e.,

((
φ
τ+

0
X H0

)
∗

Y

)
f . The second one is τ1 X H0 ( f ) ◦

φ
τ+

0
X H0

(
m+

0

)
which is equal to τ1 X H0 ( f )m0

. And the third one is a variation of a flow whose

expression is

d
dε

f ◦ φ
τ+

0
X Hε

(
m+

0

)∣∣∣∣
ε=0

=

∫ τ+

0

0

((
φ
τ+

0
X H0

)
∗

X H1

)
φ
τ
+

0
X H0

(
m+

0

) f dt.

But this vanishes since by hypothesis dH1 = 0 at each point of γ+

0 and thus X H1 = 0 on γ+

0 .
Altogether, these terms give the following equation at the point m+

0

Y =

(
φ
τ+

0
X H0

)
∗

Y + τ1 X H0 .
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Now, remember that
(
φ
τ+

0
X H0

)
∗

at the point m+

0 has the eigenvalue 1 with multiplicity 2,

whose eigenspace contains X H0 . Decompose Y accordingly, i.e., as Y = Y1 + Y2, with(
φ
τ+

0
X H0

)
∗

Y1 = Y1 and Y2 in the sum of the other eigenspaces. Therefore, the component Y1

satisfies Y1 = Y1 + τ1 X H0 which proves that τ1 = 0 and that
(
φ
τ+

0
X H0

)
∗

Y = Y . On the other

hand, differentiating the relation Hε
(
m+
ε

)
= Eε with respect to ε yields Y (H0)+H1

(
m+

0

)
= E1

and the hypothesis E1 = H1
(
γ±

0

)
implies that Y (H0) = 0. Taken together with the fact that Y

is an eigenvector of
(
φ
τ+

0
X H0

)
∗

with eigenvalue 1, this shows that Y is collinear to X H0 , i.e.,

tangent to γ+

0 . Arguing exactly in the same way, we show that Y is also the vector tangent to the

second orbit γ−

0 . This shows that, in the formula of Theorem 33, both terms d
dε A

(
m+
ε

)∣∣∣
ε=0

and

d
dε A

(
m−
ε

)∣∣∣
ε=0

vanish.

On the other hand, the Poisson bracket {H1, A} vanishes on the orbits γ+

0 and γ−

0 since dH1

does. This implies that the integral
∫ T
−T {H1, A} ◦ φt

X H0
(m) dt converges when T → ∞ and one

can replace limn→∞

∫ nτ+

0

−nτ−

0
by
∫

+∞

−∞
. �

2.3.4. The shrewd choice of the conserved quantity
Suppose now that the perturbation does not have any special properties. We first show

that when the conserved quantity A is critical on the periodic orbits, then the expression of
Theorem 33 simplifies as in Theorem 34. This result is proved in Theorem 35 and then, we
explain how many A’s with this property one can have.

Theorem 35. Let H0 ∈ C∞ (M) be a Hamiltonian either in the heteroclinic or in the homoclinic
situation. Let Hε ∈ C∞ (M) be a perturbed Hamiltonian. Let γ±

ε be families of periodic
orbits of Hε and let β ∈ Ω1 (N0) be the associated Mel’nikov 1-form. Then, for any point
m ∈ N0 \

(
γ+

0 ∪ γ−

0

)
and any conserved quantity A ∈ C∞ (M) which is critical on both orbits

γ+

0 and γ−

0 , one has the following formula

β (X A)m =

∫
+∞

−∞

{H1, A} ◦ φt
X H0

(m) dt.

Proof. We start from the expression given in Theorem 33. The vanishing of dA on γ+

0 and

γ−

0 implies that {H1, A} vanishes on γ+

0 and γ−

0 too. Therefore, the integral
∫ T
−T {H1, A} ◦

φt
X H0

(m) dt converges when T → ∞ and we have limn→∞

∫ nτ+

0

−nτ−

0
=
∫

+∞

−∞
. Moreover we have

obviously d
dε A

(
m+
ε

)∣∣∣
ε=0

= 0 and d
dε A

(
m−
ε

)∣∣∣
ε=0

= 0, and this provides the claimed expression.

�

Let us now address the issue of counting how many such conserved quantities with this
property one can have. Remark that we need only d − 1 independent A j ’s in order to describe
completely β, through the evaluations β

(
X A j

)
, since H0 itself is a conserved quantity and we

know already from Lemma 23 that β
(
X H0

)
= 0.
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Proposition 36. Suppose H0 admits a momentum map regular onN0 \
(
γ+

0 ∪ γ−

0

)
and define p

by

p =

{
d − 1 in the homoclinic situation
d − 2 in the heteroclinic situation.

Then, there exist p commuting constants of the motion B1, . . . , Bp which are critical on both γ+

0
and γ−

0 , and satisfy

dH0 ∧ dB1 ∧ · · · ∧ dBp 6= 0 on N0 \
(
γ+

0 ∪ γ−

0

)
.

Proof. First, let us define the d-dimensional vector space E ⊂ C∞ (M) generated by the
components (A1, . . . , Ad) of the momentum map. Proposition 32 implies that for each A ∈ E
there is a real number c± (A) such that X A − c± (A) X H vanishes on the orbit γ±

0 . Any function
A ∈ E is critical on γ±

0 precisely when c± (A) = 0. Actually, the map A → c± (A) is linear with
respect to A ∈ E . Indeed, one has X A+A′ = X A + X A′ which equals

(
c± (A)+ c±

(
A′
))

X H on
the orbit γ±

0 , and similarly, for any constant λ one has XλA = λX A which equals λc± (A) X H on
γ±

0 . Moreover, this map is non-trivial. Indeed, since the X A1 , . . . , X Ad form a basis of the tangent
TmN0 at each point m ∈ N0 \

(
γ+

0 ∪ γ−

0

)
, the vector field X H restricted toN0 \

(
γ+

0 ∪ γ−

0

)
is of

the form X H =
∑

j a j X A j , with a j ∈ C
∞ (N0 \

(
γ+

0 ∪ γ−

0

))
. Now, since the X A j ’s commute

with each other and with X H , this implies that the functions a j are constant onN0 \
(
γ+

0 ∪ γ−

0

)
.

Therefore, X H coincides with X A onN0 \
(
γ+

0 ∪ γ−

0

)
, where A ∈ E is given by A =

∑
j a j A j .

By continuity, they coincide on the wholeN0. For this A, the map c± thus gives 1. Therefore, the
set
(
c±
)−1

(0) is a (d − 1)-dimensional hyperplane in E composed of first integrals A which are

critical on γ±

0 . In the heteroclinic case, the hyperplanes
(
c+
)−1

(0) and
(
c−
)−1

(0) generically
do not coincide and therefore intersect along a (d − 2)-dimensional plane in E . �

Unfortunately, in the heteroclinic case, one cannot avoid that only d − 2 functions B j are
provided by Proposition 36. The systems usually presented in the literature (2-dimensional time-
periodic) are particular in this regard, because the flow of H0 has the same period on γ+

0 and γ−

0 .
In that case, there are indeed d − 1 functions B j , as the next proposition shows.

Proposition 37. Suppose H0 admits a momentum map regular onN0 \
(
γ+

0 ∪ γ−

0

)
. Assume that

the periods of γ+

0 and γ−

0 are equal, then there exist d − 1 commuting constants of the motion
B1, . . . , Bp which are critical on both γ+

0 and γ−

0 , and satisfy

dH0 ∧ dB1 ∧ · · · ∧ dBp 6= 0 on N0 \
(
γ+

0 ∪ γ−

0

)
.

Proof. First, let τ±

0 be the period of γ±

0 . We recall that the stable manifold N+
(
γ+

0

)
of the

orbit γ+

0 is fibred by the stable manifolds N+
(
m+

)
of all the points m+

∈ γ+

0 , i.e., for each

m ∈ N+
(
γ+

0

)
, the sequence φ

nτ+

0
X H0

(m) tends to a point m+
∈ γ+

0 when n → +∞. Moreover,

the map m → m+ is smooth, i.e., the limit π = limn φ
nτ+

0
X H0

acts as a projection. Of course, the

same holds for the unstable manifold N−
(
γ−

0

)
of the orbit γ−

0 .

On the other hand, if A ∈ C∞ (M) is any conserved quantity, then
(
φ

nτ+

0
X H0

)
∗

X A = X A for

all n. Therefore, X A is tangent to N+
(
m+

)
at a point m iff X A vanishes at m+ and thus on
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the whole γ+

0 . Now, if the periods τ+

0 and τ−

0 are equal, then for each m+
∈ γ+

0 there is a point
m−

∈ γ−

0 such that the manifoldsN+
(
m+

)
andN−

(
m−

)
coincide. Consequently, X A vanishes

at m+ iff it does at m−. Following the proof of Proposition 36, one builds functions B j which
are critical on γ+

0 and automatically on γ−

0 too. �

Unfortunately, the systems where the periods are equal are non-generic. We hope that the
reader will become convinced by the following example in dimension 4 (but which can easily be
adapted to higher dimensions).

Example 38. Consider the symplectic manifold M =
R
Z × R × R2, with the symplectic form

ω = dη ∧ dt + dξ ∧ dx . Let F (x, ξ) = ξ2
+ cos x . Fix a small δ > 0. Let G (x, ξ) be a

smooth function compactly supported in
{

x2
+ ξ2

≤ δ
}
. Assume that G = c > 0 in the disc{

x2
+ ξ2

≤
δ
2

}
. Now, consider the Hamiltonian H ∈ C∞ (M) defined by

H (t, η, x, ξ) = η (1 + G (x, ξ))+ F (x, ξ) .

First, H is completely integrable since it obviously Poisson-commutes with η. One can check
that for η sufficiently small, the transversally hyperbolic periodic orbits of H are γη,p (t) =

(t, η, p, 0), with p ∈ 2πZ. The picture below represents a Poincaré section (η fixed and t = 0)
of the flow of H .

Then, a short calculation shows that all the periodic orbits γη,p for p 6= 0 have period 1 while
γη,0 has period 1

1+c . In fact, this example is very general. One can work onM = T ∗S1
×M0,

with any symplectic manifold M0. It is enough to choose a function F ∈ C∞ (M0) with
hyperbolic critical points linked by heteroclinic manifolds as in the picture above, and a function
G ∈ C∞ (M0) compactly supported around one of these critical points as above.

2.3.5. Remark on Mel’nikov potentials
We would like to conclude this section with a short remark on Mel’nikov potentials. As

mentioned in the introduction, it might happen that the Mel’nikov 1-form β admits a nice
(convergent) integral expression whereas the Mel’nikov potentials do not (although the potential
itself always exists, as shown in Section 2.2.3). Indeed, suppose that we are in the situation of
Proposition 37, i.e., the periods on γ+

0 and γ−

0 are equal. In that case, one has d commuting
constants of the motion A1, . . . , Ad for which β

(
X A j

)
admits the integral expression given in

Theorem 35, namely A1, . . . , Ad−1 are those given by Proposition 37 and Ad = H0. Moreover,
the associated Hamiltonian vector fields X j := X A j provide a global frame onN0 \

(
γ+

0 ∪ γ−

0

)
.

Therefore, provided an origin point m0 ∈ N0 \
(
γ+

0 ∪ γ−

0

)
is fixed, one can parameterise3

N0 \
(
γ+

0 ∪ γ−

0

)
by (t1, . . . , td) ∈ Rd

→ m = φ
t1
X1

◦ · · · ◦ φ
td
Xd
(m0). A Mel’nikov potential

3 This parameterisation is not injective, but it is surjective.
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L is well-defined up to a constant which can be fixed by setting L (m0) = 0. Then, one has

L (m) =

∫ 1

0

d
ds

L ◦ φs∑
j

t j X j
(m0) ds =

∫ 1

0

∑
j

t jβ
(
X j
)
φs∑

j
t j X j

(m0) ds

since the flows of the X j ’s commute with each other. Inserting the integral expression of β and
exchanging the order of the sum

∑
j and the integral

∫
dt , one obtains

L (m) =

∫ 1

0

(∫
+∞

−∞

{
H1,

∑
j

t j A j

}
◦ φt

X H0
◦ φs∑

j
t j X j

(m0) dt

)
ds.

Now, since X H0 is a symplectic vector field commuting with the X j ’s, one has simply{
H1,

∑
j

t j A j

}
◦ φt

X H0
=

{
H1 ◦ φt

X H0
,
∑

j

t j A j

}
.

Finally, if it was possible to exchange the order of the two integrals
∫

ds and
∫

dt , then we would
get

L (m) =

∫
+∞

−∞

(
−

∫ 1

0

d
ds

H1 ◦ φt
X H0

◦ φs∑
j

t j X j
(m0) ds

)
dt.

The integration over the s variable would give

L (m) =

∫
+∞

−∞

(
H1 ◦ φt

X H0
(m0)− H1 ◦ φt

X H0
(m)

)
dt.

Unfortunately, this integral is not convergent unless we assume that H1 is constant on the orbits
γ±

0 (in particular this is the case when H1 is critical on γ±

0 ).

2.4. Recovering the Mel’nikov function

The Mel’nikov “function” was historically introduced for studying periodically forced 2-
dimensional Hamiltonian systems. We present here the class of periodically forced system, as
a special example of the general framework we have been developing throughout this article.

Let (M, ω) be a 2d-dimensional symplectic manifold and H0 ∈ C∞ (M) a Hamiltonian
admitting two fixed points m+

0 and m−

0 , which are hyperbolic in the sense that the linear map

which sends Y ∈ Tm±

0
M to

[
Ỹ , X H0

]
m±

0

, for any extension Ỹ ∈ Γ (TM), has no eigenvalue

on the imaginary axis. This implies the existence of stable and unstable manifolds for both
points, and we suppose that the stable manifoldN+

0 of m+

0 coincides with the unstable manifold
N−

0 of m−

0 . We suppose moreover, that H0 is completely integrable, i.e., there is a momentum
map (A1, . . . , Ad). This hypothesis is automatically true in the 2-dimensional case usually
considered. Then, we perturb the Hamiltonian into a 1-periodic time-dependent Hamiltonian
Hε (t). For studying such systems, it is very convenient to consider the “extended system” on
the (2d + 2)-dimensional manifold M̃ = M × T ∗S1, where the S1 factor corresponds to the
t variable. This manifold is equipped with the symplectic form π∗ω + dη ∧ dt , where η is the
moment variable associated with t and π is the projection M̃ → M. Let us denote the Poisson
brackets on M̃ (resp.M) by {, }∼ (resp. {, }).
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The perturbed Hamiltonian Hε can be viewed as a function on M̃ independent of η. Then, we
define the extended Hamiltonian H̃ε = Hε ◦ π + η and it is easy to check that the dynamics of
Hε is given by the projection onM of the dynamics of H̃ε on M̃.

Since the points m±

0 are fixed for H0, they give rise to periodic orbits t →
(
m±

0 , (η, t)
)

for
H̃ε, denoted by γ±

0 , and the hyperbolicity of m±

0 implies that of γ±

0 . The stable manifold of γ+

0 ,
denoted by Ñ+

0 , is nothing but the union over all s ∈ S1 of φs
∂t

(
N+

0

)
, and coincides with Ñ−

0 ,

the unstable manifold of γ−

0 . The pull-back to M̃ of the momentum map provides d functions

Ã j = A j ◦ π which are invariant by the flow of H̃0, since
{

H̃0, Ã j

}∼

(m,(η,t))
=
{

H0, A j
}

m = 0.

Moreover, they are critical on γ±

0 since the A j ’s are critical on m±

0 , because of the hyperbolicity
of m±

0 . This means that we can apply Theorem 35 which says that the Mel’nikov 1-form β

evaluated on the X Ã j
’s gives

β
(

X Ã j

)
(m,(η,t))

=

∫
+∞

−∞

{
H1, Ã j

}∼

◦ φs
X H̃0

(m, (η, t)) ds.

Now, the flows of H̃0 and H0 are simply related by

φs
X H̃0

(m, (η, t)) =

(
φs

X H0
(m) , (η, t + s)

)
.

Moreover, since the Ã j ’s are pull-backs, then
{

H1, Ã j

}∼

(m,(η,t))
is simply equal to

{
H1 (t) , A j

}
m .

Therefore, the evaluation of β becomes

β
(

X Ã j

)
(m,(η,t))

=

∫
+∞

−∞

{
H1 (t + s) , A j

}
◦ φs

X H0
(m) ds,

which is the usual form of the so-called “Mel’nikov functions” M j (t), for a fixed point m.
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